CIRCULAR ORBITS

UNDER FLAT EARTH APPROXIMATION
MAXIMUM RANGE OF A PROJECTILE DEPENDS ON THE MAGNITUDE OF \(R \)

\[\theta \]

IF EARTH HAS CURVED SURFACE AND \(\theta \) IS SUFFICIENTLY LARGE AT SUFFICIENTLY HIGH \(h \), THEN THE TRAJECTORY OF THE PROJECTILE WOULD BE AN ORBIT.

FOR PROJECTILES THE ONLY FORCE ACTING WOULD BE GRAVITATIONAL \((\vec{N}) \)

\[\sum F_x = m a_x = |\vec{N}| \]

\[\frac{m v^2}{R} = mg \Rightarrow v_{orbit} = \sqrt{Rg} \]

*IF PROJECTILE IS LAUNCHED WITH \(v_{orbit} \)
THE ONLY FORCE WOULD BE \(\vec{N} \)
Period (T) of the Orbit

$$T = \frac{2\pi R}{v} = \frac{2\pi R}{\frac{2\pi r}{T}} = \frac{2\pi R}{2\pi} = \frac{2\pi R}{2\pi} = \frac{R}{r} = \frac{2\pi \sqrt{\frac{R}{g}}}{2\pi} = \sqrt{\frac{R}{g}}$$

What is the Period of Moon's Orbit?

Radius of Moon's Orbit = 3.84×10^8 m

$$T = 2\pi \sqrt{\frac{3.84 \times 10^8}{9.80}} \approx 31.25 \text{ hrs}$$

But we know from astronomical data that T is about 1 day.

Contradiction

$$g_{\text{moon}} = \frac{f^2}{T^2} \frac{4\pi^2 R^2}{2 \pi \text{ days}^2} = \frac{4\pi (3.84 \times 10^8)^2}{2 \pi \text{ days}^2} \approx 0.002 \text{ m/s}^2$$

$T_{\text{moon}} \approx 27 \text{ days}$
CENTRIFUGAL FORCE

CENTRIFUGAL FORCE IS A FICTITIOUS* FORCE THAT ACTS IN OPPOSITE DIRECTION TO THE CENTER SEEKING OR CENTRIPETAL FORCE.

* FICTITIOUS BECAUSE IT IS NOT INCLUDED IN THE FREE BODY DIAGRAM

* ITS EXISTENCE RELIES ON THE LAW OF INERTIA (NEWTON'S FIRST LAW)

* THERE IS NO AGENT EXERTING THE CENTRIFUGAL FORCE — HENCE FICTITIOUS

* (PREP) NEWTON'S FIRST LAW, WHEN THERE IS NO EXTERNAL FORCE SO WE WILL BE WORKING WITH NON-INERTIAL REFERENCE FRAMES

\[
P_{\text{inertial (from ground)}} \quad \text{NON-INERTIAL (FROM PASSENGER)}
\]

\[
P_{\text{accelerating}} \quad P_{\text{decelerating}}
\]
CAR TURNING A CURVE

CENTRIPETAL:

THE NORMAL FORCE COMPONENT IN RADIAL DIRECTION

CENTRIFUGAL

Obeying Newton's First Law
Car (when no force is acting) *tends to move along straight line*

The car door pushes in the normal direction for keeping the turn

Example: Roller Coaster

Note: When a car takes a sharp turn you feel as if you are "thrown" away from the center of the curve. There is no such real force 😊
USEFULNESS OF CENTRIFUGAL FORCE

EX: ROLLER COASTER

AT THE BOTTOM:

\[\text{n} - \text{w} = \text{F}_\text{net} = m \text{a}_\text{x} \]

\[\therefore \text{n} = m \frac{v^2}{\text{r}_\text{bottom}} + \text{w} \text{time} = \text{w}_{\text{app}} \]

AT THE TOP

\[\text{n} + \text{w} = m \text{a}_\text{x} = m \frac{v^2}{\text{r}_\text{top}} \]

\[\text{n} = m \frac{v^2}{\text{r}_\text{top}} - \text{w} \text{time} = \text{w}_{\text{app}} \]

OBSERVE THAT WEIGHT AT THE TOP IS SMALLER THAN THE WEIGHT AT THE BOTTOM
AT THE TOP:

\[n + w_{\text{true}} = m a_n = m \frac{v^2}{\rho} \]

\[n = \frac{m v^2}{\rho} - w_{\text{true}} \]

IS THE NORMAL FORCE TRACK EXERTS ON THE CAR.

If \(\rho_{\text{top}} \) is sufficiently large,

The apparent weight will be large enough such that \(n \) app \(\approx \) \(n \) true.

But, if \(\rho_{\text{top}} \) decreases \(\frac{m v^2}{\rho_{\text{top}}} \rightarrow 0 \)

\(\therefore \) no centripetal force due to the track but,

the weight of the car would be enough to bring the car down.

Critical Speed \(v_c \) (at which \(\rho = \infty \))

\[\frac{m v^2}{\rho} = mg \Rightarrow v_c = \sqrt{\frac{mg}{m}} = \sqrt{rg} \]
Critical Angular Velocity \((\omega_c) \)

Critical angular velocity is the angular velocity at which weight alone provides the necessary centripetal acceleration.

\[
\begin{align*}
\omega < \omega_c & \quad \Rightarrow \quad \text{Loss of orbit} \\
\omega = \omega_c & \quad \Rightarrow \quad \text{Weight provides centripetal acceleration} \\
\omega > \omega_c & \quad \Rightarrow \quad \text{Object is in orbit}
\end{align*}
\]

\[
\omega_c = \sqrt{\frac{g}{r}}
\]

\[
\omega_e = \omega_c \cdot r = \frac{2\pi r}{T} = \frac{2\pi r}{2\pi \sqrt{\frac{g}{r}}} = \sqrt{\frac{g}{r}}
\]
NON-UNIFORM CIRCULAR MOTION

\[\Sigma F_r = m a_r = \frac{m v_r^2}{r} \]

\[\Sigma F_T = ma_T \]

\[\Sigma F = 0 \]

\[a = a_r + a_T \]

\[\phi = \tan^{-1} \left(\frac{a_T}{a_r} \right) \]

\[a = \sqrt{a_r^2 + a_T^2} \]

Eqs. of Motion:

1. \[s_f = s_i + v_i t + \frac{1}{2} a_i (at)^2 \]

2. \[s_f = s_i + v_i t + \frac{1}{2} a_T (at)^2 \]

3. \[\theta_f = \theta_i + \omega_i t + \frac{1}{2} \omega (at)^2 \]

4. \[\omega_f = \omega_i + \omega_T t \]

5. \[\omega_f = \omega_i + \omega_T (at) \]
READ

SECTION 7.5

CHAPTER #8

SECTIONS 8.1, 8.2